| Day
Fri
(Last
week) | Warm Up
Immediately either
begin Friday's
assignment or take
retest | General Activities
(Students taking the retest are still
responsible for Friday's assignment, but
will have to do it over the weekend) | | |------------------------------|---|--|-------| | | | Read carefully section 5.8 – as with any math reading this will require great concentration and you may need to reread it or put examples in notes. Memorize Thm 5-18 Copy examples 4 and 5 into notes P 386 #41-55 odd | | | Mon (| Check of homework
P 378 #55-68, 103
P 896 #41-55 odd | | SEC . | | Tue | Check homework Quiz — have you memorized this stuff yet??? Class avg of 90% on this quiz means no AP Calc over Easter break | | | | | | Discuss integration | | | | | Practice: P 393 #1-10 |] | Title: Mar 21 - 7:42 AM (1 of 6) $$f'(x) = \frac{\sqrt{3x-x^2}}{\sqrt{1-(x-1)^2}}$$ $$= \frac{\sqrt{1-(x-1)^2}}{\sqrt{1-(x-1)^2}}$$ $$= \frac{\sqrt{1-(x-1)^2}}{\sqrt{1-(x-1)^2}}$$ Title: Mar 21 - 8:10 AM (2 of 6) $$f(x) = \frac{1}{z} \left(\frac{1}{z} \lim_{x \to 1} \frac{x+1}{x-1} + \operatorname{arctan} x \right)$$ $$-\frac{1}{4} \lim_{x \to 1} \frac{x+1}{x-1} + \frac{1}{z} \operatorname{anctan} x$$ $$\lim_{x \to 1} \frac{x+1}{x-1} + \frac{1}{z} \operatorname{anctan} x$$ Title: Mar 21 - 8:16 AM (4 of 6) Title: Mar 21 - 8:19 AM (5 of 6) Title: Mar 21 - 8:22 AM (6 of 6)